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Single-Particle Motion in a
Large-Orbit Gyrotron

HANS P. BLUEM, PETER E. LATHAM, WESLEY G. LAWSON, MEMBER, IEEE,

AND CHARLES D. STRIFFLER, MEMBER, IEEE

Ahtract —The perturbation on the zeroth-order motion of individual

particles in an axis-encircling, large-orbit gyrotron due to a constant-ampli-

tude TEL electromagnetic (em) wave is studied analytically and numeri-

cally. Single-particle phenomena such as phase bunching and trapping are

studied as a function of the frequency difference betwe~n the cyclotron

motion and the em wave. Anafytic solutions are developed for both trapped

and untrapped particles and are compared with exact nnmericaf results.

The analytic solutions yield the percentage of trapped particles and an

expression for the minimum em field necessary for trapping. It is shown

that energy loss depends on first-order terms for trapped particles and on

second-order terms for untrapped particles. A specific set of parameters is

used to dkplay the results.

I. INTRODUCTION

T HIS STUDY describes the interaction between an

electromagnetic (em) wave and rotating electrons in a

circular waveguide. The rotation of the electrons is pro-

duced by an externally applied magnetic field parallel to

the waveguide. We confine our analysis to axis-encircling,

concentric electrons, in which case the microwave tube is

known as the large-orbit gyrotron (LOG) [1]-[3]. The

LOG is a variation on the “conventional,” or small-orbit,

gyrotron [4]-[6].

The instability that drives both the LOG and the small-

orbit gyrotron arises from the negative mass effect, which

causes electrons to phase bunch in the em wave. When the

wave frequency u differs from the frequency associated

with beam bunching, ltiC + kzu,, there is a net energy

exchange between the em wave and the bunched electrons.

In our notation, 1 is the azimuthal harmonic mode number

of the em wave, tiC = eBO/ ym o is the electron cyclotron

frequency, k, is the axial wavenumber, and u, is the

parallel velocity of the electrons.
The degree of bunching is a function of both the field

amplitude and the size of the frequency mismatch, a – lUC

– kzu=. There is always some tendency for the particles to

bunch, but the formation of tight bunches occurs only for
a narrow range of parameters. For small enough frequency

mismatch or large enough wave amplitude, the particles

become trapped. When trapping occurs, the particles no

longer rotate at the cyclotron frequency, but become syn-
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chronized with the wave. This effect, which is accompanied

by a large exchange of wave and particle energy, is essen-

tial for high-efficiency operation.

The large-orbit gyrotron can operate as either an oscilla-

tor or an amplifier. The mode considered here is conceptu-

ally that of an amplifier, in which there is linear spatial

growth near the front of the tube. Farther downstream,

however, saturation occurs, yielding a steady-state config-

uration in which the loss in beam kinetic energy is bal-

anced by the production of em radiation. Thus, in the

saturated region, the particles see an approximately con-

stant-amplitude wave. It is this region that is of interest to

us; to analyze it we adopt the single-particle formalism.

We assume that the particle distribution is uniform in the

saturated region. This is analogous to the “sudden” ap-

proximation employed by Thode and Sudan [7], [8] in their

analysis of the two-stream instability. Its validity rests on

the observation that the waves go from the linear regime to

the nonlinear regime in only a few e-foldings. Thus, unless

the growth rate is exceptionally slow, the particles are not

significantly perturbed when they enter the saturated re-

gion. While a more accurate treatment would take such

perturbations into account, they are not important to the

qualitative picture we seek to develop here.

Even though the single-particle formalism suffers from

the inherent drawback that it cannot predict the self-con-

sistent amplitude and frequency mismatch, its advantage

lies in its ability to isolate the important physical effects

associated with the nonlinear particle trajectories. In par-

ticular, we are able to derive approximate analytical ex-

pressions for both trapped and untrapped particles and

study a broad range of em field parameters.

We assume that the beam density is low enough that the

particles interact with a single empty waveguide mode of

constant amplitude and frequency [3]. Within this context,

we study bunch formation as well as the effect of bunching

on energy exchange. The study of the particle motion is

done both numerically and analytically. However, we em-

phasize the development of the analytic solutions which

describe the particle motion in both the linear and nonlirt-

ear regimes.

In the gyrotron literature, only a few papers deal with

the actual particle orbits and the relationship between

single-particle motion and energy exchange. Sprangle and

Drobot [9] consider a configuration composed of a gyrat-

ing beam interacting with a TEO~ rectangular mode be-
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tween two parallel conducting plates. They discuss the

relationship between trapping and the electric field ampli-

tude. Vomvoridis [10] also examines a small-orbit gyrotron

and studies the effects of frequency mismatch, initial beam

energy, and interaction length on energy loss. More im-

portantly, he studies the relative importance of trapped

and untrapped particles. Vitello et al. [11] study particle

motion in a large-orbit gyrotron. They solve the single-par-

ticle equations of motion for a system with a cylindrical

cavity. The analytic solutions they obtain are valid for

untrapped particles only. They also present a numerical

study, calculating efficiencies over a wide range of parame-

ters.

In Section II a detailed description of the problem is

given. Analytic solutions are presented in Section 111. Two

different solutions are developed, each pertaining to a

different class of particles. In Section IV, the analytic

solutions are compared to the numerical solutions, and

some general results are presented for a specific set of

system parameters. A summary is presented in Section V.

II. MODEL AND BASIC FORMALISM

A schematic of the large-orbit gyrotron system is given

in Fig. 1. This figure shows the zeroth-order particle mo-

tion and the perturbing em wave parameters. The zeroth-

order motion of an axis-encircling, concentric electron

cyclotron orbit is &en by

r(t) =ro

Fig. 1. Large-orbit gyrotron system showing single-particle zeroth-order

motion and the em wave.

and magnetic fields of the em wave, and & = BO~. In

general,~he electric and magn~tic fields contain all compo-

nents: E = (Er, E+, E=) and B = (B,, B+, B=). For the pur-

poses of this paper, we consider only TE waveguide modes

(Ez = O). We concentrate on an example that has nearly

grazing intersection between the dispersion curves, and we

neglect the TM modes, since their linear growth rate goes

to zero at grazing intersection [3]. In the gyrotron

interaction, the azimuthal component of the electric field

~~ exerts the dominant em force. This field component is

given by

E+= Ep.T; (a[~r)sin(tit – kzz– 1+), (4)

@(t) =$.(l) =C#)w+drct where J~ represents the derivative of the ordinary Bessel

function of order 1,a,n = dl./r~~ where P:. is the nth root
z(t) =Zo(t) =Zm+uzof of J1’, and k= and u are related by the dispersion equation

Z)r(t)=uro=o

Y(t) ‘Ye= (l-P:.-B:)-’”. (1)

The particle’s cyclotron radius is ro, its perpendicular

velocity is U~O,and its parallel velocity is U=,.The em wave
is defined by its amplitude Ep, its mode numbers 1 and n,

and its axial wavenumber k,. The waveguide radius is

given by rW. A cylindrical coordinate system is used

throughout this paper.

The single-particle motion is determined by the relativis-

tic Lorentz force equation

(/.) = c(k; + a;H)1”2. (5)

To understand the effects of the em wave on the LOG

particles, we linearize the Lorentz force equation, treating

the em fields as first-order quantities. Linearizing the

particles’ position about the zeroth-order locations as given

in (1) [r(t) = r. + rl(t), +(t) = I#Io(i)+ +I(t), z(i) = Zo(t)

+ Zl(t)], we obtain from (2) the set of equations

‘ Y1
~1 — rotiC@l — roUC— = — ~ [E,, + rocoCBz,- U20B0,] (6)

Yo my.

from which it follows that
‘where fl is given by

dy –e
—(7.E) -

dt = me’
(3)

?1—.—
+[ ro~.E+l + U,OE,l

Yo m yoc 1

(7)

(8)

(9)

where F is the electron velocity, E and B are the electric The azimuthal component of the electric field (4) evaluated
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Fig. 3. Dispersion curve in the laboratory frame. Parameters given in
Table I.

at the particle position becomes

“sin [~Dt – /c=zw – lf$w – /c,zI(t) – Z@I(t)] (10)

where ti~ E u – luC – kzuzOis the difference between the

em frequency u and the particle frequency lUC + kzuzO.To

obtain a solution to (6)–(8), a number of parameters must

be specified. The ‘parameters associated with the particle

are rO, @w, Zm, Udo,and UZO;those associated with the wave
are n, 1, k,, EP, and rW. Of these parameters, only three

need to be varied to assess the effects of the em wave on

the particle motion: the initial phase of the particle in the

wave, @w, the axial wavenumber, k=, and the amplitude of

the wave, EP.
Taking advantage of the azimuthal periodicity of the em

wave, the range of @w can be limited to one wave period,

2 n/1 radians. For a set of particles uniformly distributed

in one wave period, as displayed in Fig. 2, we can vary

either k= or the wave amplitude to observe the effects of

bunching and trapping on each particle. Fig. 2 also shows

TABLE I

PARAMETERS FOR THE CASE STUDY: LABORATORY FRAME

Parameter Value(s)

-1w kz 36 tO 74 m

E 1.05 x 105 to 1.13 x 10’ Vlln
P

t 7

n 1

Mode TE

‘w
0.075 m

Particle r. 0.06 m

‘$
00

- nfL to + Tll radians

Z. 0.00m

Br 0.0
0

~$o
0.941 (y = 6.29)

B= 0.3
0

‘347--””-””””i

sz~l
-80 -60 -40 -20 0 20 40 60 80

Axial Wove Number k, (m-i)

Fig. 4. Dispersion curve transformed to the beam frame. Parameters

given in Table II.

the two relevant azimuthal velocities: for the wave, u+ ,,e =
w

rOco/Z, and for the particles, U+P=,,= U+o = rOtiC. We see that

o – lo, is proportional to the difference in these velocities.
When the longitudinal variation in the wave is included, a

factor kzuz, is introduced, leaving w – luC – kzvzO as the

difference in frequencies in the laboratory frame. A typical

plot of the waveguide dispersion curve and the beam line is

shown in Fig. 3, where the parameters of Table I are used.

At resonance, u = ltiC + k=vz,; this point is indicated by the

crossing of the beam line and the waveguide dispersion

curve.

To simplify the analysis, we Lorentz transform from the

laboratory frame (finite fl=O) to the beam frame (~~, = O).

The equivalent beam frame dispersion curve is shown in

Fig. 4. Again, specific values are plotted, this time using

Table II parameters. When the axial velocity of the par-

ticles is small ( /3,0s 0.3), the values of the parameters in
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TABLE II
PARAMETERS FOR THE CASE STUDY: BEAM FRAME

Parameter Value(s)

@ k- 0.0 to 35.0 m-l
z

E- 105 to 107 V/m
P

L“ 7

n“ 1

Mode TE

r- 0.075 m
w

Particle r. 0.06 m
0

+;O - xl!? to + wI.! radians

z“ 0.00m0
5.

r.
0.0

(0 0.986 (Y = 6)

a-Z. 0.0

the beam frame are not significantly different from the

actual values in the laboratory frame (compare Tables I

and II). For the remainder of this paper all work is done in

the beam frame and for clarity, the primes are dropped.

III. ANALYTIC SOLUTIONS

The solution to (6)–(8) depends crucially on whether or

not the particle is trapped. For untrapped particles, the

dominant motion is given by the cyclotron orbits in the

uniform magnetic field, and the em fields produce small

oscillations around the unperturbed orbits; these oscil-

lations are easily handled using standard techniques. For

trapped particles, on the other hand, the final particle

motion is radically different from the original cyclotron

orbits. First, the particles become synchronized with the

em wave, so their average rotation frequency shifts from tiC

to a. Second, because the particles exhibit large excursions

from the minimum of the effective potential associated

with E+, the oscillations around the average motion are

highly nonlinear. These two effects combine to make the

trapped particle analysis considerably more difficult than

that of the untrapped particles. However, we are able to

derive approximate analytic solutions for both types of

orbits. We consider untrapped

sis is simpler.

A. Untrapped Solution

The condition that leads to

particles first, as th~ ‘analy-

untrapped solutions is that

%(t) and zl(t) in (10) remain negligible for all time.

Mathematically this condition is Z+l(t ) < 27T and k=zl(t)

<<2 V. This is the assumption used by Vitello et al. in their

derivation. Working in the beam frame ( UZO= O), ignoring

the contributions from E,,, B,,, B=,, and B+,, and assuming

949

that the above inequalities are satisfied, (6)–(8) become

- &#o~EpJt’(~,.ro)?1 — rotic+l —

. [cos(tiD:- 1+00) -cos(@oo)] (11)

..
ro~l + tiCrl = — ‘(l- B~O)EpJ/(a,nrO) sin(@Dt - L$w)

my.

(12)

Zl =() (13)

where (9) has been used to eliminate ~1 and yl [yI(0) = O],

and Zm has been set to zero. The terms proportional to

/3& which arise from the time dependence of yl, give rise

to the negative mass effect. Using standard techniques,

these equations result in the following first-order particle

motion:

e Ep
rl(t)=– — 2 J1’(%ro)my. o? —aD

[
. sin l+m sin u,t + 2 cos l$IM cos tiCt

UC

6.);—6):
— ;cos(aDt–l+m)+

1

Cosl+m (14)
l.dcl.JD

J1’(%ro)@l(t) = & “
my. to: —f& r.

“(
cos o~t – cos wCt] sin l@w

+

x

Zl(t)=o

e Y#+o Ep
Yl(t) =

_ — —J;(~/nro)
my. c aD

. [cos(@Dt - hj$m)-cos@m] .

(15)

(16)

(17)

at two distinctThese solutions exhibit oscillations

frequencies, UC and u~. Oscillations at UC are a residual

effect of the cyclotron motion and are not especially

important. Oscillations at o~, on the other hand, represent

the main effect of the perturbing em wave; they arise from

the beating between the cyclotron motion and the wave.

Note that the amplitude of the oscillations in @l is
proportional to l/ti&; this is typical of a near-resonant

interaction.

In addition to the two frequencies UC and a~, there is

also a term linear in t in the expression for ~l. This term

arises because particles with different initial phase have
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different total energy, and thus different values of tiC; it is

essentially a correction to the relativistic cyclotron fre-

quency. The smallness of the linear term indicates that the

particles do indeed remain untrapped. For trapped par-

ticles, there is a much larger linear term that is propor-

tional to the difference frequency ~~. We will see this

explicitly when we discuss the trapped solutions below.

An important feature of these solutions is that the

first-order energy mc2y1, averaged over initial phase 400, is

zero. Consequently, whenever the untrapped solutions are

valid, the net energy exchange is at least second order. This

is typical of the interaction of an unbunched beam with a

nonresonant wave.

The range of validity of the untrapped solution is found

by combining the condition 1+1<< 2T with (15). The re-

sulting inequality may be written

for t z l/ti~. No matter how small the electric field, this

condition is violated as u~ ~ O.

We have derived solutions analogous to (14)-(17) that

include all the TE field components, and we found that the

contribution from E+, dominates all aspects of the particle

motion for the cases considered. This is supported by

numerically solving the full system of equations, although

the Eo,-only results begin to show departures from the true

solution for particles that approach the trapped–untrapped

border.

B. Trapped Solution

For a trapped particle, the zeroth-order motion of the

phase angle is no longer given by @(t ) = @oo+ CJct. Instead,

the particle becomes synchronized with the wave, and

1o( i) - at. To model this behavior, we let

%(t) = ~+alms(u,t- o)+ ~t+#I,(t) (19)

where again ~(t) = @oo + CJCt + @l(t). The term tiDt/l

ensures that 1+( t) is proportional to at. Consistent with

our physical picture of a particle trapped in an effective

potential, we include the term al cos (wBt – O) to model

the oscillations about the bottom of the well; the term

a ~/2 is included so that the particles oscillate around the

potential minimum. The function @2(t) is assumed small.

We expect this form of the solution to describe particle

motion near the bottom of the potential, where there is a

well-defined bounce frequency. Although valid when the

bounce oscillations are small, this solution breaks down

near the trapping boundary.

To proceed, we insert (19) into (6)–(8) and solve for the

quantities a ~, al, ti~, and 9. As with the untrapped

solution, we assume that rl, k,zl, and yl are small. After

some algebra, we find that

“J [
t. la o
sln l~oo + —

o 2

1+lalcos(u~t’–t3) dt’

[
+ a,ro ~

1
– uBal sin(ti~t – 0) (20)

,.
ro+z + UC~l = ‘(l-D~O)EPJ~(alnro) sin

my.

[
. l@oo+~+ lalcos(tiBt -8) 1
+ rou~al cos(uBt – t3) (21)

~l=(). (22)

Again, we have included only E+ for a TE waveguide

mode, and we have assumed that +2(t) is of the same

order as rl(t) and Zl(t).

‘ To solve these equations, the sine term on the right-hand

side must be simplified. To ensure that the particle oscil-

lates around the zero of E@,we require that

la o
~+l@oo=0,2m-,4m, .y (23)

Using this result and the periodicity of the sine function,

we are left with terms of the form sin [lal cos ( w~t – 13)].

These can be expanded using [12]:

sin(zcos$) =2 ~ (–l)kJ2k+1(z)cos [(2k+l)f] (24)
k=O

leaving only cos (u~t – 6) terms on the right-hand side.

The remaining equations can be solved using Laplace

transforms and the appropriate initial conditions on the

position and velocity, resulting in

~J2i+1(za1)
rl(t) = A-%J,~(al.ro) ~ (–1) Zk+l

my. uCti~ k=O

{

(+
x

U! - [(2k +l)@B]2 [

sin[(2k +l)(ti~t – 8)]

(2k + 1)’ti~ (2k+l)~B

u:
costiCt sin [(2k +1)6] +

Uc

I )XsintiCtcos [(2k+l)O] +sin[(2k+l)6] (25)
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2e EP .l~(al~ro) ~

,~0(-1)’J2~+1(la1)

Finally, terms with cos(u~t – 6) give
@l,(t) = —

myO u; rO
2e Ep J/’(%ro)~1=—

“{

2

[(

~; fl:o

)

my. u; — (.4); r.
‘1(’U1)P’’:3B’4

——

Q: - [(2;; l)ti,]’ l-B;”+ a (2k +1)2
(31)

The remaining terms comprise +2. While these expressions

.COS [(2k +l)(ti~t – o)] ‘COS@ct COS [(2k+l)O]
appear complicated, in practice only the first one or two

terms in the Bessel function expansion are needed. This

(2k+l)ti, 1
results in a tractable set of equations for ao, al, COB,and f?.

— sintiCt sin [(2k +1)8]
UC IV. COMPARISON OF SOLUTIONS AND RESULTS

To display the results, we use the parameters given in

P;.
‘ [COS[(2k +1)61] +(2k+l)ti~t

Table H. These values, which are the transformed parame-

- (2k +1) ters of Table I, model the Rotating Beam Facility (RBF) at

the University of Maryland [2]. The mode number is

)

chosen to be 1 = 7; this is the first harmonic that has a

resonant intersection. The laboratory and beam frame
.sin[(2k+l)O]] ‘~–~–alc05(@~f–~) d“lspersion curves are plotted in Figs. 3 and 4, respectively.

(26)

Zl(t) =0 (27)

and

x {sin [(2k +l)(aBt– o)] +sin[(2k +1)6] }. (28)

From (18) and (26) we can determine the expression for

@l. To obtain the values of ao, al, tiB, and 6, a direct

comparison is made between the approximation for 41

(from (18)) and the solution for @l (from (26)). In addition

to the condition given in (23), comparing constant terms

yields

a. EP JI’(CWO)
:;O %@ ~.

—=. —
2

“ k:o(-okJ2k+l(k)

(2k+l)2
COS [(2k +1)8] . (29)

I

Terms linear in t give

(.JD 2e Ep J;(alnrO)
—B.&-& r.

1 ‘–myo

kJ2k+l(1aJ‘kf&l) (2k+l) sin [(2k +1)6]. (30)

A. Comparison of Analytic and Exact Numerical Solutions

1 ) Untrapped: A comparison of the analytic (15) and the

exact numerical solutions of the full set of Lorentz equa-

tions for an untrapped particle is shown in Fig. 5. The

numerical solutions are obtained by integrating the relativ-

istic single-particle equations of motion using all fields of

the TE mode. We have plotted /[,@(t) – uc(t )] = 1[+00 +

@l(t)] versus time for a single particle using the parameters
given in Table II, with Ep = 105 V/m and k== 27 m-l.

For these parameters the cyclotron period is 1.3 ns. We

have chosen a wave centered at zero radians with a posi-

tive peak at – 7r/14 rad. Thus, the wave period extends

from – 7r/7 to n/7 rad.

For the values chosen, all of the particles in an azimuthal

wave period are untrapped. The particle shown in Fig. 5 is

at the positive peak of the wave, i+w = – 90°. For this

particle, 101 varies by at most 7°, satisfying the assump-

tion used to obtain the untrapped solutions: Z@l<<360°.

Physically, the particle and the phase velocity differ suffi-

ciently that the particle velocity is perturbed only slightly;

the distance from resonance is approximately 0.75x109

rad/s, which for this relative low field strength is quite

large. Note that there is a slight increase in phase due to

the term linear in time in (15).

2) Trapped: The comparison of the trapped solutions

(19), (26), and (29)-(31) with the exact numerical solution
is shown in Fig. 6. We have plotted l[~(tl – or] versus

time for a single particle using the paramqtem given in

Table II, with Ep = 106 V/m and k== 27 m-1. Since the

particle is trapped, we have plotted our results in the wave
frame. Again, we have chosen a wave centered at zero
radians with a maximum at – n/14 rad, and we have

chosen a particle at the positive peak of the wave, low =

– 90°. This particle is close to the trapped-untrapped

border, which occurs at lqw = – 101.2°, and its trajectory

extends down to the edge of the wave ( – 1800). The figure
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-48
Untrapped Particle

~
w

~ -76_

:
P

$’
i -90—

~
-i3.
Y ---- Analytical solufmn

-lo4– — Numerical solution

3

-118 I I I 1 I ! I I I ,
0.0 2.0 4.0 60 8.0 10,0 12,0

Time (nsec)

Fig. 5. Comparison between the analytic solution and the numerical
solution for an untrapped particle.

180–
Trapped Particle

----- Analytical solution

— Numerical solution
~ 90–
al
g
g
~Cl

~
3

T
~ -90 —
&
Y

“80L—————J
0.0 2.0 4.0 6.0 8.0 10.0 12,0

Time (nsec)

Fig. 6. Comparison between the anatytic solution and the numerical

solution for a trapped particle.

again shows only the azimuthal motion. Although not

shown in this figure, the trapped solutions become worse

as the trapping border is approached, but even very close

to the border the approximate analytic solutions are rea-

sonably accurate. However, for particles between the

central zero of the wave and its maximum, the agreement

between the two solutions is better than shown. Between

the trapped solutions’ region of validity and the region

where the untrapped solutions are accurate, an area exists

where we do not have a good analytic solution. Even

though these particles are untrapped, they are close enough
to resonance that (18) is violated; consequently, they de-

velop a significant phase shift that cannot be taken into

account by the untrapped analysis. In the next section we

show that this region is relatively unimportant as far as net

energy loss is concerned.

B. Results and Discussion

To evaluate the parameters associated with trapped par-

ticle orbits, we first choose al in (29)–(31). Using al we

can find COBfrom (31). Then (30) and (29) are solved for O

and then a ~. Finally, a ~ gives us the initial azimuthal

position of the particle, @w. Since we must pick al first for

the trapped solutions and then determine +00, it is difficult

to choose a particular particle in the wave as is done for

the numerical solutions. However, an advantage to this

approach is that the solutions produce the range in +00 for

which particles are trapped. The upper limit on al for any

set of parameters is sT/1. The lower limit can be found by

setting 6 = n/2; this ensures that the particle starts at the

zero of E+. With 6 = 7r/2, (30) and (31) can be solved

simultaneously for altin. The condition that al must lie

between almln and T/1 for any trapped particle can be used

to obtain the limits for I#sm.In addition, the upper limit

(al = n/1) gives the particles on the trapped-untrapped

border, and the percentage of particles trapped can easily

be found.

With the knowledge of the limits on al, we can calculate

the average energy loss or gain, ~1, due to the trapped

particles. This is given by

J

71/[
yl dal

71= ~m;; _ a,fi” o (32)

Note that ~1 is nonzero for the trapped solutions. This

expression, with the denominator replaced by r/1 to repre-

sent all the particles, trapped and untrapped, is used in

Fig. 9 to determine the average energy loss per particle.

Another quantity which can be obtained from our solu-

tions is the minimum electric field for which trapping

occurs (for a given set of parameters). The first particle to

be trapped is the one in the central zero of the wave

period, so @m= O; consequently, aO = O and 8 = T/2. For

the minimum field, this particle is on the trapped–un-

trapped border, so we also have al= w/1. Applying these

conditions to (30) and (31) and making the simplifying

assumption that u~ << UC, we find that

&JD/l ()[r 111 2 WCJ1’( a[nro 1
)1/2

(%,”)1’2 = ~ Boro

“ J$& ,:0(-1)’J2’+l(T) . (33)2k+l

This gives a relationship between the distance from reso-

nance of the particles and the smallest E field (Epdn)
necessary for trapping.

Besides the quantitative information provided by the

solutions, considerable qualitative information about the

particle motion can be obtained. First, the effect of the

distance from resonance on the percentage of trapped

particles can be deduced from (29)–(31). Since the value of

al remains constant for the border particle, we see from

(31) that u~ remains constant. Thus, if u~ is increased,

(30) implies that there must be a corresponding increase in

O (note that O lies between zero and 7r/2); then, from (29),

we see that a ~ must decrease. Consequently, for the border

particle $00 shifts toward the center of the wave period as

u~ increases, implying that the number of trapped par-

ticles decreases as the distance from resonance increases.
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To understand the scaling with EP, we again make the

physically reasonable assumption that the bounce frequen-

cy is much less than the cyclotron frequency; tiB

<< tiC. Then, because al is bounded, (31) yields ~~ a ~.

This dependence is ‘typical of particle oscillations in the

potential well formed by an eleetric field of strength EP.

The effect of changing EP or ti~ on an individual

particle can be seen easily only for the particle with a.= O,

i.e., the one in the central zero. Using the condition that

lal < 7/2, so that .l~(lal) << Jl(lal), and again assuming

that UB << UC, we find that

21uC~~OJ1(la1~, )EPJ;(a,nrO) ti~ (34)
@B= .—

tiDBoro al~~l
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and

C’@oro
Kdw%,n) = 2

21 U#&EpJi’ ( alnrO ) “

Consistent with our physical intuition, (34) and

(35)

(35) indi-

cate that al decreases and ti~ increases as EP/u~ in-

creases.

C. Graphical Results and Discussion

In this section we present the net energy loss or gain as a

function of time, bunching in the azimuthal electric field,

and trapping versus distance from resonance. Fig. 7 shows

the percentage of particles trapped as a function of dis-

tance from resonance for both the analytic and the

numerical solution; this figure uses the parameters of

Table II with EP = 10 G V/m. While there is a good corre-

lation between the two solutions in most of the region,

near resonance the discrepancy becomes significant. How-

ever, since the region of maximum energy loss occurs away

from resonance, this problem does not limit the solutions’

usefulness in evaluating other important effects. In ad-

dition, we find that in the region close to resonance the

particles responsible for the dominant portion of energy

exchange are not near the trapping border. Thus, the error

in the number of trapped particles does not have a large

effect on energy loss or gain.

It turns out that the dominant contribution to energy

loss comes from the trapped particles. We alluded to this

result earlier when we showed that the first-order energy

loss is zero for untrapped particles, while it is nonzero for

trapped particles. A set of graphs to illustrate this point is

given in Fig. 8. Fig. 8(a) shows a group of particles with

Ep = 106 V/m, k== 27 m-1, and the remaining parame-

ters given in Table II. The solid lines represent the

perturbed azimuthal motion of individual particles,

/[@(t)– @Ct] = /[@w + @l(t)]. The dashed lines represent

the corresponding motion of the zeros of Eo, with the

positive part of the field initially between – 180° and OO.
Bunching due to the negative mass effeet can easily be

seen. Trapping can also be seen as some particles do not

cross the outer boundaries of the wave period, represented

by the dashed tines which begin at @ = – 180° and 1+=

+ 180°. In Fig. 8(b) we plot, for this group, the net energy
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Fig. 7. Percentage of particles trapped versus distance from resonance
from both the analytic trapped solution and the numericaf solution.
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Fig. 8. (a) Group of particles at k,= 27 m-l and EP = 106 V/m
showing bunching and trapping. (b) Comparison of the contributions
to total energy loss from the trapped particles and untrapped particles
in (a).

loss per particle of trapped and untrapped particles as well

as the total energy change; the initial energy is 2.555 MeV.

The average energy loss of the trapped particles is close to

the total energy loss, and the trapped particle curve is a

fairly good approximation of the total curve.
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Fig 9. Energy loss versus distance from resonance for different peak

electric fields using the analytic trapped solutions.

In Fig. 9, peak average energy loss versus distance from

resonance is shown. This plot, when combined with the

plot showing the percentage of trapped particles, il-

luminates the interrelation between energy loss, location of

the bunch in the wave, and number of trapped particles.

For the base problem with EP =106 V/m, the optimum

distance from resonance occurs at approximately 0.75X 109

rad/s, which corresponds to k= = 27 m- 1. At this point

about 55 percent of the particles are trapped, and Fig. 8

shows that the bunch forms almost exactly at the peak of

the azimuthal electric field. While these results apply to a

particular set of parameters, they illustrate the importance

of both the number of particles trapped and the average

electric field “seen” by these trapped particles. Fig. 9,

together with Fig. 7, shows that close to resonance it is the

position of the bunch that limits the energy loss while far

from resonance it is the percentage of trapped particles

that limits energy loss.

From (26), (29), (30), and (31), the error produced by

neglecting ~z, which is also the error in using (19) to

approximate +1, can be evaluated. The largest error occurs

for the particles on the trapping border and is found to be

about 13 percent. It is instructive, however, to see where

this error manifests itself. Fig. 7 shows that, at resonance,

the difference between the analytic and numerical solu-

tions for the percentage of trapped particles is indeed

about 13 percent, while away from resonance it is much

less. This is because the error occurs in the equations of al.
For particles close to the trapping border and away from

resonance, a small difference in @w translates into a large

difference in al; working backwards, a 13-percent error in

al becomes a smaller error for @w.

V. SUMMARY AND CONCLUSIONS

This paper contains a study of the single-particle motion

in a TE ~1 cylindrical waveguide mode in a large-orbit

gyrotron. The field amplitude is “small” and remains

constant. The parameters which are varied in this study are

the initial azimuthal position of the particle, @w, the axial

wavenumber k,, and the wave amplitude E.. The axial

wavenumber is important because it determines the

frequency difference between the particles and the wave.

The fixed parameters are close to those of the LOG

experiment on the RBF at the University of Maryland.

By varying these parameters, two important characteris-

tics of the particle motion can be observed. One is bunch-

ing due to the negative mass effect. This can be seen by

uniformly distributing a group of particles within one

azimuthal wave period. For a LOG this bunching is not

only in phase but also in physical space. The other char-

acteristic is trapping, which can be studied by varying k,
and/or Ep for a group of particles distributed in an

azimuthal wave period.

Two different analytic solutions are developed. One is

valid for untrapped particles, the other for trapped par-

ticles. These solutions indicate that first-order energy loss

is due solely to the trapped particles. The trapped particle

solutions can be used to estimate the number of trapped

particles for a given k= and EP, and the minimum Ep for a

given kZ at which trapping first occurs. The trapped

solutions also accurately predict all of the trends associ-

ated with varying k, and EP. Both of the solutions give a

good approximation to the numerical results in their re-

spective regions of validity. Close to a tangential intersec-

tion between the waveguide curve and the beam line, the

validity of the approximations used to obtain the trapped

solutions improves, and the trapped solutions are more

accurate than in the case of a general intersection. This

fact is important because most gyrotrons are designed to

operate at tangential intersection. There is a region in

which 1+1 is a significant fraction of 2 T even though the

particles are not trapped. In this region neither analytic

solution is a good approximation to the exact results;

however, this group of particles is not important to energy

loss.

Energy loss is a function of the number of trapped

particles and the phase of the wave in which the bunch

forms. Both of these are functions of k= and EP. For

maximum energy loss, a large fraction of the particles must

be trapped. In addition, bunch formation must occur well

into the positive half of the azimuthal wave period. These

two requirements, which oppose one another, balance to

give an optimum k= for a given EP. The analytic trapped

solutions can be used to find this optimum k, for energy

loss. While the equation for k, is transcendental and

involves a numerical integration over +M, its solution is

found rapidly compared to a particle simulation.
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