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Single-Particle Motion in a
Large-Orbit Gyrotron
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AND CHARLES D. STRIFFLER, MEMBER, IEEE

Abstract —The perturbation on the zeroth-order motion of individual
particles in an axis-encircling, large-orbit gyrotron due to a constant-ampli-
tude TE), electromagnetic (em) wave is studied analytically and numeri-
cally. Single-particle phenomena such as phase bunching and trapping are
studied as a function of the frequency difference between the cyclotron
motion and the em wave. Analytic solutions are developed for both trapped
and untrapped particles and are compared with exact numerical results.
The analytic solutions yield the percentage of trapped particles and an
expression for the minimum em field necessary for trapping. It is shown
that energy loss depends on first-order terms for trapped particles and on
second-order terms for untrapped particles. A specific set of parameters is
used to display the results.

I. INTRODUCTION

HIS STUDY describes the interaction between an

electromagnetic (em) wave and rotating electrons in a
circular waveguide. The rotation of the electrons is pro-
duced by an externally applied magnetic field parallel to
the waveguide. We confine our analysis to axis-encircling,
concentric electrons, in which case the microwave tube is
known as the large-orbit gyrotron (LOG) [1]-{3]. The
LOG is a variation on the “conventional,” or small-orbit,
gyrotron [4]-[6].

The instability that drives both the LOG and the small-
orbit gyrotron arises from the negative mass effect, which
causes electrons to phase bunch in the em wave. When the
wave frequency o differs from the frequency associated
with beam bunching, /w,+ k,v,, there is a net energy
exchange between the em wave and the bunched electrons.
In our notation, / is the azimuthal harmonic mode number
of the em wave, w,=eB,/ym, is the electron cyclotron
frequency, k, is the axial wavenumber, and v, is the
parallel velocity of the electrons.

The degree of bunching is a function of both the field
amplitude and the size of the frequency mismatch, w — /w,
— kv,. There is always some tendency for the particles to
bunch, but the formation of tight bunches occurs only for
a narrow range of parameters. For small énough frequency
mismatch or large enough wave amplitude, the particles
become trapped. When trapping occurs, the particles no
longer rotate at the cyclotron frequency, but become syn-
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chronized with the wave. This effect, which is accompanied
by a large exchange of wave and particle energy, is essen-
tial for high-efficiency operation.

The large-orbit gyrotron can operate as either an oscilla-
tor or an amplifier. The mode considered here is conceptu-
ally that of an amplifier, in which there is linear spatial
growth near the front of the tube. Farther downstream,
however, saturation occurs, yielding a steady-state config-
uration in which the loss in beam kinetic energy is bal-
anced by the production of em radiation. Thus, in the
saturated region, the particles see an approximately con-
stant-amplitude wave. It is this region that is of interest to
us; to analyze it we adopt the single-particle formalism.
We assume that the particle distribution is uniform in the
saturated region. This is analogous to the “sudden” ap-
proximation employed by Thode and Sudan [7], [8] in their
analysis of the two-stream instability. Its validity rests on
the observation that the waves go from the linear regime to
the nonlinear regime in only a few e-foldings. Thus, unless
the growth rate is exceptionally slow, the particles are not
significantly perturbed when they enter the saturated re-
gion. While a more accurate treatment would take such
perturbations into account, they are not important to the
qualitative picture we seek to develop here.

Even though the single-particie formalism suffers from
the inherent drawback that it cannot predict the self-con-
sistent amplitude and frequency mismatch, its advantage
lies in its ability to isolate the important physical effects
associated with the nonlinear particle trajectories. In par-
ticular, we are able to derive approximate analytical ex-
pressions for both trapped and untrapped particles and
study a broad range of em field parameters.

We assume that the beam density is low enough that the
particles interact with a single empty waveguide mode of
constant amplitude and frequency [3]. Within this context,
we study bunch formation as well as the effect of bunching
on energy exchange. The study of the particle motion is
done both numerically and analytically. However, we em-
phasize the development of the analytic solutions which
describe the particle motion in both the linear and nonlin-
ear regimes.

In the gyrotron literature, only a few papers deal with
the actual particle orbits and the relationship between
single-particle motion and energy exchange. Sprangle and
Drobot [9] consider a configuration composed of a gyrat-
ing beam interacting with a TE,, rectangular mode be-
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tween two parallel conducting plates. They discuss the
relationship between trapping and the electric field ampli-
tude. Vomvoridis [10] also examines a small-orbit gyrotron
and studies the effects of frequency mismatch, initial beam
energy, and interaction length on energy loss. More im-
portantly, he studies the relative importance of trapped
and untrapped particles. Vitello e al. [11] study particle
motion in a large-orbit gyrotron. They solve the single-par-
ticle equations of motion for a system with a cylindrical
cavity. The analytic solutions they obtain are valid for
untrapped particles only. They also present a numerical
study, calculating efficiencies over a wide range of parame-
ters.

In Section II a detailed description of the problem is
given. Analytic solutions are presented in Section ITI. Two
different solutions are developed, each pertaining to a
different class of particles. In Section IV, the analytic
solutions are compared to the numerical solutions, and
some general results are presented for a specific set of
system parameters. A summary is presented in Section V.

II. MODEL AND BaSic FORMALISM

A schematic of the large-orbit gyrotron system is given
in Fig. 1. This figure shows the zeroth-order particle mo-
tion and the perturbing em wave parameters. The zeroth-
order motion of an axis-encircling, concentric electron
cyclotron orbit is given by

r(t)=r

$(1) = 99(2) = g + w1
2(t) = zy(t) = zgg + v, 1
v,(t)=v,=0

v,(t) =0, =B, c=row,

v(t)=v,=B.¢c

V() == (1-82-82)"". M
The particle’s cyclotron radius is r,, its perpendicular
velocity is v, , and its parallel velocity is v, . The em wave
1 defined by its amplitude E,, its mode numbers / and n,
and its axial wavenumber k,. The waveguide radius is
given by r,. A cylindrical coordinate system is used
throughout this paper.

The single-particle motion is determined by the relativis-
tic Lorentz force equation

d U 2 S
E(m‘yl')’)=—e[E+UX(B+BO)] (2)
from which it follows that
dy —e,
—‘;t‘=m—ci(v'E) (3)

where U is the electron velocity, E and B are the electric
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Fig. 1. Large-orbit gyrotron system showing single-particle zeroth-order

motion and the em wave.

and magnetic fields of the em wave, and B, = B,%. In
general, the electric and magnetic fields contain all compo-
nents: E = (E,,E;, E,) and B= (B,, By, B,). For the pur-
poses of this paper, we consider only TE waveguide modes
(E,=0). We concentrate on an example that has nearly
grazing intersection between the dispersion curves, and we
neglect the TM modes, since their linear growth rate goes
to zero at grazing intersection [3]. In the gyrotron
interaction, the azimuthal component of the electric field
E, exerts the dominant em force. This field component is
given by

E¢=Ep.],’(a,nr)sin(wt— (4)
where J/ represents the derivative of the ordinary Bessel
function of order /, a), = p’,, /r,,, Where p}, is the nth root
of J/, and k, and w are related by the dispersion equation

()

To understand the effects of the em wave on the LOG
particles, we linearize the Lorentz force equation, treating
the em fields as first-order quantities. Linearizing the
particles’ position about the zeroth-order locations as given
in (1) [r(1) = ry+ ry(8), (1) = do(1)+ $3(2), 2(1) = zo(1)
+ z,(#)], we obtain from (2) the set of equations

k,z—1¢).

~e(k+a3)”

. "1 e
" 21 )
rl_rOwc(f)l_rOwcTY;__‘ m.YO[Er1+r0wc 21 Zo ‘1’1] (6)
. T
e + —— + Br 7
rop1 + @ iy + 1w, mYo[ v, 1] ()
Bt v, =—— [E, row.B, | (8)
*Yo
where ¥, is given by
"1 e
:;(: T W [rOwCE¢1 + UzoEzl] : (9)

The azimuthal component of the electric field (4) evaluated
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Fig. 2. The relationship of a group of particles with respect to the
azimuthal electric field E,.
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Fig. 3. Dispersion curve in the laboratory frame. Parameters given in

Table 1.

at the particle position becomes
E4>1 = Ele'(azn"o)

-sin [wpt = k,zop = Ibog — k.2, (¢) — 1, ()] (10)

where wp,=w—lw,— kv, is the difference between the
em frequency w and the particle frequency /w, + kv, . To
obtain a solution to (6)—(8), a number of parameters must
be specified. The parameters associated with the particle
are 7o, oo, Zoos Us,» and v, ; those associated with the wave
are n, I, k,, E,, and r,. Of these parameters, only three
need to be varied to assess the effects of the em wave on
the particle motion: the initial phase of the particle in the
wave, ¢, the axial wavenumber, k,, and the amplitude of
the wave, E,.

Taking advantage of the azimuthal periodicity of the em
wave, the range of ¢, can be limited to one wave period,
2% /1 radians. For a set of particles uniformly distributed
in one wave period, as displayed in Fig. 2, we can vary
either k, or the wave amplitude to observe the effects of

bunching and trapping on each particle. Fig. 2 also shows
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TABLE 1
PARAMETERS FOR THE CASE STUDY: LABORATORY FRAME

Parameter Value(s)
-1
Wave kz 36 to 74 m
5 7
Ep 1.05 x 107 to 1.13 x 10" V/m
£ 7
n 1
Mode TE
T 0.075 m
w
Particle T, 0.06 m
¢ ~ w/% to + w/% radians
0o
z 0.00 m
o
8, 0.0
o
8 0.941 (y = 6.29)
¢
Bz 0.3
°
4.2

Frequency (xI0rad/sec)
o
i

o
T

32"ﬁ—|’ T
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|

A A A R S
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Axial Wave Number k, (m™)

Fig. 4. Dispersion curve transformed to the beam frame. Parameters
given in Table II.

the two relevant azimuthal velocities: for the wave, Vg™
row/1, and for the particles, vy = vy, =740, We see that
w — lw, is proportional to the difference in these velocities.

- When the longitudinal variation in the wave is included, a

factor kv, is introduced, leaving w —lw,— kv, as the
difference in frequencies in the laboratory frame. A typical
plot of the waveguide dispersion curve and the beam line is
shown in Fig. 3, where the parameters of Table I are used.
At resonance, w = [w_ + kv, ; this point is indicated by the
crossing of the beam line and the waveguide dispersion
curve. ‘ :

To simplify the analysis, we Lorentz transform from the
laboratory frame (finite B.,) to the beam frame (B,,=0).
The equivalent beam frame dispersion curve is shown in
Fig. 4. Again, specific values are plotted, this time using
Table Il parameters. When the axial velocity of the par-

ticles is small (B, <0.3), the values of the parameters in
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TABLE II
PARAMETERS FOR THE CASE STUDY: BEAM FRAME

Parameter Value(s)

1

Wave K’ 0.0 to 35.0 m
B 10° to 107 V/m
- 7
n” 1
Mode } TE
4
\
r; ! 0.075 m
Particle r; 0.06 m
¢;° - n/% to + n/% radians
z” 0.00 m
o
6; 0.0
[
87 0.986 (y = 6)
%
Bz 0.0

Q

the beam frame are not significantly different from the

actual values in the laboratory frame (compare Tables I

and II). For the remainder of this paper all work is done in
the beam frame and for clarity, the primes are dropped.

I

The solution to (6)—(8) depends crucially on whether or
not the particle is trapped. For untrapped particles, the
dominant motion is given by the cyclotron orbits in the
uniform magnetic field, and the em fields produce small
oscillations around the unperturbed orbits; these oscil-
lations are easily handled using standard techniques. For
trapped particles, on the other hand, the final particle
motion is radically different from the original cyclotron
orbits. First, the particles become synchronized with the
em wave, so their average rotation frequency shifts from w,
to w. Second, because the particles exhibit large excursions
from the minimum of the effective potential associated
with E,, the oscillations around the average motion are
highly nonlinear. These two effects combine to make the
trapped particle analysis considerably more difficult than
that of the untrapped particles. However, we are able to
derive approximate analytic solutions for both types of
orbits. We consider untrapped particles first, as the analy-
sis is simpler.

ANALYTIC SOLUTIONS

A. Untrapped Solution

The condition that leads to untrapped solutions is that
¢,(¢) and z,(¢) in (10) remain negligible for all time.
Mathematically this condition is /¢,(¢) < 27 and k,z,(¢)
<< 2. This 1s the assumption used by Vitello ef al. in their
derivation. Working in the beam frame (v, = 0), ignoring
the contributions from E,, B,, B, , and B, , and assuming
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that the above inequalities are satisfied, (6)—(8) become

wc
P~ row = ——.Ep‘ll/(alnrO)

e 'B2
my, 0w,
[cos (wpt = lgg) —cos (I9p, )] (11)

. e
oy + w0 fy=— m_yo(l - B;O)Ep-]/(“m"o)sm(wpt — l9gg)

(12)
(13)

where (9) has been used to eliminate y; and v, [y,(0) = 0],
and zy, has been set to zero. The terms proportional to
,84?0, which arise from the time dependence of vy,, give rise
to the negative mass effect. Using standard techniques,
these equations result in the following first-order particle
motion;

£=0

E

e
r(e)=- povy E;Eog‘]/(aln’b)

. . @p
. [sm I sinw t + — cos Iy, cOs w,t
wc

w, Wi — W

- w—Dcos(th—l¢00)+ mCOSl%o (14)
e E JI,(alnrO)

¢,(2) = )

myy, w, — @p 7y

. {[cos wpt —COs w ¢ ] sin Iy,

Wp | . 2
+ |~ sinw,t —sinwyt | coslpy + B,

w,

2 2
wc —Wp
2
Wp

(1)
(16)

<

X [ (1= cos wpt) sin Iy,

+(wpt —sinth)COSl%o]}

7 (¢)=0
YoBs, E
M_lel(alnrO)

t)y=——
Y1() my, c B

“[cos(wpt — Idgy) — O Ipgg] - (17)

These solutions exhibit oscillations at two distinct
frequencies, w, and wj. Oscillations at w, are a residual
effect of the cyclotron motion and are not especially
important. Oscillations at &, on the other hand, represent
the main effect of the perturbing em wave; they arise from
the beating between the cyclotron motion and the wave.
Note that the amplitude of the oscillations in ¢, is
proportional to 1/w?; this is typical of a near-resonant
interaction.

In addition to the two frequencies w, and w, there is
also a term linear in ¢ in the expression for ¢;. This term
arises because particles with different initial phase have
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different total energy, and thus different values of w,; it is
essentially a correction to the relativistic cyclotron fre-
quency. The smallness of the linear term indicates that the
particles do indeed remain untrapped. For trapped par-
ticles, there is a much larger linear term that is propor-
tional to the difference frequency w, We will see this
explicitly when we discuss the trapped solutions below.

An important feature of these solutions is that the
first-order energy mc?y,, averaged over initial phase ¢, is
zero. Consequently, whenever the untrapped solutions are
valid, the net energy exchange is at least second order. This
is typical of the interaction of an unbunched beam with a
nonresonant wave.

The range of validity of the untrapped solution is found
by combining the condition /¢, < 27 with (15). The re-
sulting inequality may be written

E 2a 1 1

wp\?
A ( —) (18)
¢B, ) Jl'(aln”o) IB¢0 W,
for ¢t 21/wp. No matter how small the electric field, this
condition is violated as w;, — 0.
We have derived solutions analogous to (14)—(17) that

include all the TE field components, and we found that the -

contribution from E; dominates all aspects of the particle
motion for the cases considered. This is supported by
numerically solving the full system of equations, although
the E, -only results begin to show departures from the true
solution for particles that approach the trapped—untrapped
border.

B. Trapped Solution

For a trapped particle, the zeroth-order motion of the
phase angle is no longer given by ¢(¢) = ¢y, + . Instead,
the particle becomes synchronized with the wave, and
{¢p(1) ~ wt. To model this behavior, we let

¢1(z)— +alcos(wBt—0)+ t+¢2(z) (19)

where again ¢(¢) = ¢gy + w f + ¢1(¢). The term wpt/!
ensures that /¢(¢) is proportional to wt. Consistent with
our physical picture of a particle trapped in an effective
potential, we include the term a,; cos(wgt — 6) to model
the oscillations about the bottom of the well; the term
ay /2 is included so that the particles oscillate around the
potential minimum. The function ¢,(r) is assumed small.
We expect this form of the solution to describe particle
motion near the bottom of the potential, where there is a
well-defined bounce frequency. Although valid when the
bounce oscillations are small, this solution breaks down
near the trapping boundary.

To proceed, we insert (19) into (6)—(8) and solve for the
quantities a,, a,, wg, and §. As with the untrapped
solution, we assume that r,, k,z;, and vy, are small. After

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MIT-35, NO. 11, NOVEMBER 1987

some algebra, we find that

Fi— w g, = Ep']ll(alnrO)

e
2
Yo ‘%.8%

la,

j(; sm[l%o + BN
+ la; cos(wpt’ — 0)] dar’

Wp
+ wc”o[T — wpa, sin(wgzt — 0)} (20)

" e )
L LA RO

la,
| lpgo + >t la; cos(wgt —8)
+ rgwya; cos(wyt — 0) (21)
£,=0. (22)

Again, we have included only E, for a TE waveguide
mode, and we have assumed that ¢,(¢) is of the same
order as () and z,(¢).

To solve these equations, the sine term on the right-hand
side must be simplified. To ensure that the particle oscil-
lates around the zero of E, we require that

la

—29 +lggy = 0,27, 47, - - - (23)

Using this result and the periodicity of the sine function,
we are left with terms of the form sin[/a; cos(wgt — 9))].
These can be expanded using [12]:

sin(zcos¢) = 2k§0(—-1)kfzk+1(z)cos [Qk+1)¢] (24)

leaving only cos(wpt — @) terms on the right-hand side.
The remaining equations can be solved using Laplace
transforms and the appropriate initial conditions on the
position and velocity, resulting in

= (an) 5 (1) i)

2e
t)=—
n(4) my 2k +1

Yo W W

X { o szcﬂ)%]z [sin[(Zk +1)(wpt — 0)]

(2k+1) wB (2k+1)w3

cosw,tsin[(2k +1)8] +

c c

X sin w,tcos [ (2k +1)0]]+sin [(2k +1)0]} (25)
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2e E J/'("‘ln"o)
b, (1) = m w—g

0“8 0

i (- 1)kJ2k+1(la1)

k=0

w? B,
Hkﬁjﬁ o} (2k 11)_2)

-cos [(2k +1)(wpt — 0)] —cos w tcos[(2k +1)6]

{ o — [(2k +1) wp]?

— M sin w, ¢ sin [(2k +1)0]}

¢

2

- m[cos [(2k +1)8] + (2k +1) wyt

-sin [(2k +1)0]]} _ ool ﬁ—alcos(ooBt—lﬁ?)

z,(t)=0

and

2e Y0:8¢0 ? J2k+1(la1)
Y1(t)""’"y'; J (alnrO) Z (" ) 2k +1

X {sin [(2k +1)(wpt — )] +sin[(2k +1)0] }. (28)

From (18) and (26) we can determine the expression for
¢,. To obtain the values of a,, a;, wg, and 6, a direct
comparison is made between the approximation for ¢,
(from (18)) and the solution for ¢, (from (26)). In addition
to the condition given in (23), comparing constant terms
yields

ﬂ__ﬁ_ﬂ __p’jl(alnrO)

2 myy, %“’129 o
0 + l
£ oo, @)
k=0

/

Terms linear in ¢ give

_ 2e Bzfﬁ-]/(“ln"o)
l my, " wp o

Z ( 1)k 2k+1( 1)

p2 2k + 1) in[(2k +1)8].

(30)
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Finally, terms with cos(wgt — 8) give
_ Ze Ep JI,(alnrO) wc%_wlz? 2
a, = 3 J(la)) |1+ ———82 |
myop W, — Wy o Wp

(31)

The remaining terms comprise ¢,. While these expressions
appear complicated, in practice only the first one or two
terms in the Bessel function expansion are needed. This
results in a tractable set of equations for a,, a,, wg, and 4.

IV. COMPARISON OF SOLUTIONS AND RESULTS

To display the results, we use the parameters given in
Table II. These values, which are the transformed parame-
ters of Table I, model the Rotating Beam Facility (RBF) at
the University of Maryland [2]. The mode number is
chosen to be /=7; this is the first harmonic that has a
resonant intersection. The laboratory and beam frame
dispersion curves are plotted in Figs. 3 and 4, respectively.

A. Comparison of Analytic and Exact Numerical Solutions

1) Untrapped: A comparison of the analytic (15) and the
exact numerical solutions of the full set of Lorentz equa-
tions for an untrapped particle is shown in Fig. 5. The
numerical solutions are obtained by integrating the relativ-
istic single-particle equations of motion using all fields of
the TE mode. We have plotted [[¢(¢)— w.(¢)] =[dgy +
qbl(t)] versus time for a single particle using the parameters
given in Table II, with E,=10° V/m and k,=27 m %
For these parameters the cyclotron period is 1 3 ns. We
have chosen a wave centered at zero radians with a posi-
tive peak at — 7/14 rad. Thus, the wave period extends
from — /7 to /7 rad.

For the values chosen, all of the particles in an azimuthal
wave period are untrapped. The particle shown in Fig. 5 is
at the positive peak of the wave, /¢y, = —90°. For this
particle, /¢, varies by at most 7°, satisfying the assump-
tion used to obtain the untrapped solutions: /¢, < 360°.
Physically, the particle and the phase velocity differ suffi-
ciently that the particle velocity is perturbed only slightly;
the distance from resonance is approximately 0.75x10°
rad /s, which for this relative low field strength is quite
large. Note that there is a slight increase in phase due to
the term linear in time in (15).

2) Trapped: The comparison of the trapped solutions
(19), (26), and (29)—(31) with the exact numerical solution
is shown in Fig. 6. We have plotted I[¢(:)— wt] versus
time for a single particle using the paramcters given in
Table II, with E,=10° V/m and k, =27 m™". Since the
particle is trapped we have plotted our results in the wave
frame. Again, we have chosen a wave centered at zero
radians with a maximum at — 7/14 rad, and we have
chosen a particle at the positive peak of the wave, /¢y, =
—90°. This particle is close to the trapped-untrapped
border, which occurs at /¢y, = —101.2°, and its trajectory
extends down to the edge of the wave (—180°). The figure
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Fig. 5. Comparison between the analytic solution and the numerical
solution for an untrapped particle.
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Fig. 6. Comparison between the analytic solution and the numerical
solution for a trapped particle.

again shows only the azimuthal motion. Although not
shown in this figure, the trapped solutions become worse
as the trapping border is approached, but even very close
to the border the approximate analytic solutions are rea-
sonably accurate. However, for particles between the
central zero of the wave and its maximum, the agreement
between the two solutions is better than shown. Between
the trapped solutions’ region of validity and the region
where the untrapped solutions are accurate, an area exists
where we do not have a good analytic solution. Even
though these particles are untrapped, they are close enough
to resonance that (18) is violated; consequently, they de-
velop a significant phase shift that cannot be taken into
account by the untrapped analysis. In the next section we
show that this region is relatively unimportant as far as net
energy loss is concerned.

B. Results and Discussion

To evaluate the parameters associated with trapped par-
ticle orbits, we first choose a; in (29)—(31). Using a; we
can find wj from (31). Then (30) and (29) are solved for 6
and then a,. Finally, aq, gives us the initial azimuthal
position of the particle, ¢,. Since we must pick a, first for

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL, MTT-35, NO. 11, NOVEMBER 1987

the trapped solutions and then determine ¢, it is difficult
to choose a particular particle in the wave as is done for
the numerical solutions. However, an advantage to this
approach is that the solutions produce the range in ¢, for
which particles are trapped. The upper limit on «, for any
set of parameters is 7//. The lower limit can be found by
setting 8 = a#/2; this ensures that the particle starts at the
zero of E,. With 8 ==/2, (30) and (31) can be solved
simultaneously for @, . The condition that a; must lie
between a; and =// for any trapped particle can be used
to obtain the limits for ¢yy. In addition, the upper limit
(a;=a/l) gives the particles on the trapped-untrapped
border, and the percentage of particles trapped can easily
be found.

With the knowledge of the limits on a;, we can calculate
the average energy loss or gain, ¥;, due to the trapped
particles. This is given by ‘

fW/[Y1 da,

4
= 32
n (W/l)_alm ( )

Note that ¥, is nonzero for the trapped solutions. This
expression, with the denominator replaced by 7/! to repre-
sent all the particles, trapped and untrapped, is used in
Fig. 9 to determine the average energy loss per particle.
Another quantity which can be obtained from our solu-

-tions is the minimum electric field for which trapping

occurs (for a given set of parameters). The first particle to
be trapped is the one in the central zero of the wave
period, so ¢4, = 0; consequently, a,=0 and # = 7/2. For
the minimum field, this particle is on the trapped-un-
trapped border, so we also have a, = 7/I. Applying these
conditions to (30) and (31) and making the simplifying
assumption that w, < w,, we find that

wp/! (w V2 20 (ay,n) V2
(E, )1/2 ! ) By,

'8<[>o Z (_ )k 2k+1( )

(7)) 2, 2k +1

This gives a relationship between the distance from reso-
nance of the particles and the smallest E field (E, )
necessary for trapping.

Besides the quantitative information provided by the
solutions, considerable qualitative information about the
particle motion can be obtained. First, the effect of the
distance from resonance on the percentage of trapped
particles can be deduced from (29)—(31). Since the value of
a, remains constant for the border particle, we see from
(31) that wp remains constant. Thus, if w,, is increased,
(30) implies that there must be a corresponding increase in
6 (note that @ lies between zero and 7/2); then, from (29),
we see that a, must decrease. Consequently, for the border
particle ¢, shifts toward the center of the wave period as
wp increases, implying that the number of trapped par-
ticles decreases as the distance from resonance increases.

(33)
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To understand the scaling with E,, we again make the
physically reasonable assumption that the bounce frequen-
cy is much less than the cyclotron frequency; wy
< w,. Then, because a, is bounded, (31) yields w, « ﬁ; .
This dependence is typical of particle oscillations in the
potential well formed by an electric field of strength E,,.

The effect of changing E, or w, on an individual
particle can be seen easily only for the particle with a, =0,
i.e., the one in the central zero. Using the condition that
la, <7/2, so that Jy(la,) < Ji(la;), and again assuming
that wp << w,, we find that

B 2lwcﬁ‘:0.]1(la1m)EPJ,’(a,nrO) _wp
wpByry

(34)

Wp
1n-un
and
2
wpByry
a, Jlla = ’
Ly i 1m) 212chjOEI,J/(azn’o)

(35)

Consistent with our physical intuition, (34) and (35) indi-
cate that a, decreases and wj increases as E,/w} in-
creases.

C. Graphical Results and Discussion

In this section we present the net energy loss or gain as a
function of time, bunching in the azimuthal electric field,
and trapping versus distance from resonance. Fig. 7 shows
the percentage of particles trapped as a function of dis-
tance from resonance for both the analytic and the
numerical solution; this figure uses the parameters of
Table II with E, =10° V/m. While there is a good corre-
lation between the two solutions in most of the region,
near resonance the discrepancy becomes significant. How-
ever, since the region of maximum energy loss occurs away
from resonance, this problem does not limit the solutions’
usefulness in evaluating other important effects. In ad-
dition, we find that in the region close to resonance the
particles responsible for the dominant portion of energy
exchange are not near the trapping border. Thus, the error
in the number of trapped particles does not have a large
effect on energy loss or gain.

It turns out that the dominant contribution to energy
loss comes from the trapped particles. We alluded to this
result earlier when we showed that the first-order energy
loss is zero for untrapped particles, while it is nonzero for
trapped particles. A set of graphs to illustrate this point is
given in Fig. 8. Fig. 8(a) shows a group of particles with
E,=10° V/m, k,=27 m~), and the remaining parame-
ters given in Table II. The solid lines represent the
perturbed azimuthal motion of individual particles,
Ho(2)— w2l =1{¢g + ¢,(2)]. The dashed lines represent
the corresponding motion of the zeros of E,, with the
positive part of the field initially between —180° and 0°.
Bunching due to the negative mass effect can easily be
seen. Trapping can also be seen as some particles do not
cross the outer boundaries of the wave period, represented
by the dashed lines which begin at /¢ = —180° and l¢ =
+180°. In Fig. 8(b) we plot, for this group, the net energy
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Fig. 7. Percentage of particles trapped versus distance from resonance
from both the analytic trapped solution and the numerical solution.
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Fig. 8. (a) Group of particles at k,=27 m~! and E,=10° V/m
showing bunching and trapping. (b) Comparison of the contributions
to total energy loss from the trapped particles and untrapped particles
in (a).

loss per particle of trapped and untrapped particles as well
as the total energy change; the initial energy is 2.555 MeV.,
The average energy loss of the trapped particles is close to
the total energy loss, and the trapped particle curve is a
fairly good approximation of the total curve.
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Fig 9. Energy loss versus distance from resonance for different peak
electric fields using the analytic trapped solutions.

In Fig. 9, peak average energy loss versus distance from
resonance is shown. This plot, when combined with the
plot showing the percentage of trapped particles, il-
luminates the interrelation between energy loss, location of
the bunch in the wave, and number of trapped particles.
For the base problem with E, =10% V/m, the optimum
distance from resonance occurs at approximately 0.75 X 10°
rad /s, which corresponds to k, =27 m™~ 1 At this point
about 55 percent of the particles are trapped, and Fig. 8
shows that the bunch forms almost exactly at the peak of
the azimuthal electric field. While these results apply to a
particular set of parameters, they illustrate the importance
of both the number of particles trapped and the average
electric field “seen” by these trapped particles. Fig. 9,
together with Fig. 7, shows that close to resonance it is the
position of the bunch that limits the energy loss while far
from resonance it is the percentage of trapped particles
that limits energy loss.

From (26), (29), (30), and (31), the error produced by
neglecting ¢,, which is also the error in using (19) to
approximate ¢,, can be evaluated. The largest error occurs
for the particles on the trapping border and is found to be
about 13 percent. It is instructive, however, to see where
this error manifests itself. Fig. 7 shows that, at resonance,
the difference between the analytic and numerical solu-
tions for the percentage of trapped particles is indeed
about 13 percent, while away from resonance it is much
less. This is because the error occurs in the equations of a;.
For particles close to the trapping border and away from
resonance, a small difference in ¢, translates into a large
difference in a,; working backwards, a 13-percent error in
a, becomes a smaller error for ¢,.

V. SuMMARY AND CONCLUSIONS

This paper contains a study of the single-particle motion
in a TE,; cylindrical waveguide mode in a large-orbit
gyrotron. The field amplitude is “small” and remains
constant. The parameters which are varied in this study are
the initial azimuthal position of the particle, ¢4, the axial
wavenumber k,, and the wave amplitude E,. The axial
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wavenumber is important because it determines the
frequency difference between the particles and the wave.
The fixed parameters are close to those of the LOG
experiment on the RBF at the University of Maryland.

By varying these parameters, two important characteris-
tics of the particle motion can be observed. One is bunch-
ing due to the negative mass effect. This can be seen by
uniformly distributing a group of particles within one
azimuthal wave period. For a LOG this bunching is not
only in phase but also in physical space. The other char-
acteristic is trapping, which can be studied by varying k,
and/or E, for a group of particles distributed in an
azimuthal wave period.

Two different analytic solutions are developed. One is
valid for untrapped particles, the other for trapped par-
ticles. These solutions indicate that first-order energy loss
is due solely to the trapped particles. The trapped particle
solutions can be used to estimate the number of trapped
particles for a given k, and E,, and the minimum E, for a
given k, at which trapping first occurs. The trapped
solutions also accurately predict all of the trends associ-
ated with varying k, and E,. Both of the solutions give a
good approximation to the numerical results in their re-
spective regions of validity. Close to a tangential intersec-
tion between the waveguide curve and the beam line, the
validity of the approximations used to obtain the trapped
solutions improves, and the trapped solutions are more
accurate than in the case of a general intersection. This
fact is important because most gyrotrons are designed to
operate at tangential intersection. There is a region in
which /¢, is a significant fraction of 2# even though the
particles are not trapped. In this region neither analytic
solution is a good approximation to the exact results;
however, this group of particles is not important to energy
loss.

Energy loss is a function of the number of trapped
particles and the phase of the wave in which the bunch
forms. Both of these are functions of k, and E,. For
maximum energy loss, a large fraction of the particles must
be trapped. In addition, bunch formation must occur well
into the positive half of the azimuthal wave period. These
two requirements, which oppose one another, balance to
give an optimum k, for a given E,. The analytic trapped
solutions can be used to find this optimum k, for energy
loss. While the equation for k, is transcendental and
involves a numerical integration over ¢, its solution is
found rapidly compared to a particle simulation.
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